Mann, J. Behavioral sampling methods for cetaceans: a review and critique. Mar. Mammal Sci. 15102–122 (1999).
Pompom, F. et al. Who Eats What: Assessing Diet Using Next-Generation Sequencing. Mol. School. https://doi.org/10.1111/j.1365-294X.2011.05403.x (2012).
Deagle, BE et al. Counting with DNA in metabarcoding studies: how to convert sequence reads into food data?. Mol. School. 28391–406 (2019).
Bay, ET et al. DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). School. Evol. 75435–5453 (2017).
Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the diet of Pacific harbor seals in Mexico. Mar. Biol. 1661–14 (2019).
Ford, MJ et al. Estimate of a killer whale (Orcinus orc) population diet using DNA sequencing analysis of feces. PLOS ONE 11e0144956 (2016).
Thomas, AC, Deagle, BE, Eveson, JP, Harsch, CH & Trites, AW Quantitative DNA Metabarcoding: Improving Proportional Species Biomass Estimates Using Correction Factors Derived from Control Material. Mol. School. Resour. 16714–726 (2016).
Deagle, BE, Chiaradia, A., Mcinnes, J. & Jarman, SN Pyrosequencing of fecal DNA to determine the diet of little penguins: what goes in is what comes out? https://doi.org/10.1007/s10592-010-0096-6.
Ando, H. et al. Methodological trends and perspectives of animal feeding studies by non-invasive metabarcoding of faecal DNA. Approximately. DNA 2391–406 (2020).
Günther, B., Fromentin, J., Metral, L. & Arnaud-haond, S. Metabarcoding confirms the opportunistic foraging behavior of Atlantic bluefin tuna and reveals the importance of gelatinous prey. PeerJ 9, e11757. https://doi.org/10.7717/peerj.11757 (2021).
Simon, M., Hanson, MB, Murrey, L., Tougaard, J. & Ugarte, F. From Captivity to the Wild and Back: An Attempt to Free Keiko the Killer Whale. Mar. Mammal Sci. 25693–705 (2009).
Moore, M. et al. Rehabilitation and release of marine mammals in the United States: risks and benefits. Mar. Mammal Sci. 23731–750 (2007).
Leray, M. et al. A novel set of versatile primers targeting a short fragment of the mitochondrial COI region to metabarcode metazoan diversity: application to characterize the gut content of coral reef fish. Before. zool. ten1–14 (2013).
Geller, J., Meyer, C. & Parker, M. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in biotic investigations of all taxa. Mol. School. Resour. 13(5), 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).
Blaxter, ML et al. A molecular evolutionary framework for the phylum Nematoda. Nature https://doi.org/10.1038/32160 (1998).
Sinniger, F. et al. Global analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Before. Mars Science. 31–14 (2016).
Brandt, Mich. et al. Bioinformatics pipelines combining denoising and clustering tools enable more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. School. Resour. 21(6), 1904-1921 (2021).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).
Callahan, BJ et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13581-583 (2016).
Antich, A., Palacin, C., Wangensteen, OS & Turon, X. Denoise or Bundle, That’s Not the Question: Optimizing Pipelines for COI Metabarcoding and Metaphylogeography. BMC Bioinform. 221–25 (2021).
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarmv2: Highly Scalable, High-Resolution Amplicon Clustering. PeerJ 20151–12 (2015).
Google Scholar
Quast, C. et al. The SILVA Ribosomal RNA Gene Database Project: Improving Data Processing and Web Tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).
Machida, RJ, Leray, M., Ho, S.-L. & Knowlton, N. Reference metazoan mitochondrial gene sequence datasets for taxonomic assignment of environmental samples. Science. Data 4170027 (2017).
Wang, Q., Garrity, GM, Tiedje, JM & Cole, JR Naive Bayesian Classifier for Rapid rRNA Sequence Assignment.pdf. Appl. Approximately. Microbiol. 735261–5267 (2007).
Davis, NM, Di Proctor, M., Holmes, SP, Relman, DA, and Callahan, BJ Simple statistical identification and elimination of contaminant sequences in marker gene and metagenomics data. Microbiome https://doi.org/10.1186/s40168-018-0605-2 (2018).
Wangensteen, OS, Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of hard-bottom littoral communities: high diversity and gaps in the database revealed by two molecular markers. PeerJ 20181–30 (2018).
Google Scholar
Schnell, IB, Bohmann, K. & Gilbert, MTP Label jumps are illuminated – reducing sequence-sample identification errors in metabarcoding studies. Mol. School. Resour. 151289-1303 (2015).
Song, X et al. A new deep-sea hydroid (Cnidaria:Hydrozoa) from the Bering Sea basin reveals high genetic relevance for Arctic and adjacent shallow-sea species. Biol Fleece. 39461–471 (2016).
Froslev, TG et al. The post-clustering DNA amplicon data curation algorithm yields reliable estimates of biodiversity. Nat. Commmon. 81–11 (2017).
Vacquié-Garcia, J., Lydersen, C., Ims, RA & Kovacs, KM Habitats and movement patterns of white whales Delphinapterus leucas in Svalbard, Norway, in a changing climate. Dev. School. 61–12 (2018).
Kastelein, RA, Nieuwstraten, SH & Verstegen, MWA Passage time of carmine red dye through the digestive tract. In Harbor Porpoise Biology 235–245 (1997).
Lesage, V., Lair, S., Turgeon, S. & Beland, P. Diet of belugas in the St. Lawrence Estuary (Delphinapterus leucas) in a changing ecosystem. Can. Champ-Nat. 13421–35 (2020).
Bluhm, BA and Gradinger, R. Regional variability in food availability for arctic marine mammals. School. Appl. 18S77–S96 (2008).
Quakenbush, LT et al. Beluga Food, Delphinapterus leucasin Alaska from stomach contents, March-November. Tue. Fish. Round. 7770–84 (2015).
Choy, ES et al. Variation in beluga whale diet in response to changes in prey availability: an overview of changes in the Beaufort Sea ecosystem. Tue. School. Program. Ser. 647195-210 (2020).
Mychek-Londer, JG, Chaganti, SR & Heath, DD Metabarcoding of native and invasive species in the stomach contents of Great Lakes fish. PLOS ONE 151–22 (2020).
Nedreaas, K. Food and feeding habits of young blackspots, Pollachius virens (L.), on the west coast of Norway. Fisk. Skr. Ser. Havundersokelser 18263–301 (1987).
Google Scholar
Højgaard, DP Food nematodes and saithe parasites, Pollachius virens (L.), of the Faroe Islands. Sarsia 84473–478 (1999).
Ekbaum, E. Notes on the occurrence of Acanthocephala in Pacific fishes: I. Echinorhynchus gadi (Zoega) Müller in salmon and E. lageniformis sp. Nov and Corynosoma strumosum (Rudolphi) in two species of flounder. Parasitology 30267–274 (1938).
Baptista-Fernandes, T. et al. Human gastric hyperinfection by Anisakis simplex: A severe and unusual presentation and a brief review. Int. J. Infect. Say. 6438–41 (2017).
Hubert, B., Bacou, J. & Belveze, H. Epidemiology of human anisakiasis: Incidence and sources in France. A m. J. Too much. Med. Hyg. 40301–303 (1989).
Hays, R., Measures, LN & Huot, J. Capelin (Mallotus villosus) and herring (Clupea harengus) as paratenic hosts of Anisakis simplex, a parasite of beluga (Delphinapterus leucas) in the St. Lawrence estuary. Can. J. Zool. 781411–1417 (1998).
Yanong, RPE Nematode (roundworm) infections in fish Flight. 1, 1–9 (2002).
Jauniaux, T. et al. Post-mortem findings and causes of death of harbor porpoises (Phocoena phocoena) stranded from 1990 to 2000 along the coasts of Belgium and northern France. J. Compar. Pathol. 126243-253 (2002).